Theory of Chromatography

The Chromatogram

- A *chromatogram* is a graph showing the detector response as a function of elution time.
- The *retention time*, t_R , for each component is the time needed after injection of the mixture until that component reaches the detector.

The Chromatogram (cont.)

• *Retention volume*, V_R , is the volume of mobile phase required to elute a particular solute from the column:

$$V_{\rm R} = t_{\rm R} \times F$$

where F is the mobile phase flow rate

• The *dead time*, *t*_m, is the time of travel of unretained mobile phase through the column.

The Chromatogram (cont.)

• The *adjusted retention time*, t_R ', for a solute is the additional time required for solute to travel the length of the column beyond the time required by unretained solvent:

$$t_{\rm R}$$
' = $t_{\rm R} - t_{\rm m}$
In GC, $t_{\rm m}$ is usually taken as the time
needed for CH₄ to travel through the
column.

The Chromatogram (cont.)

For any two components 1 and 2, the *relative retention*, α, is the ratio of their adjusted retention times:

$$\alpha = \frac{t_{R2}}{t_{R1}}$$

where $t'_{R2} > t'_{R1}$,

so $\alpha > 1$.

The Capacity Factor

• For each peak in the chromatogram, the *capacity factor*, *k*', is defined as:

$$k' = \frac{t_R - t_m}{t_m}$$

 $k' = \frac{\text{time solute spends in stationary phase}}{\text{time solute spends in mobile phase}}$

The Capacity Factor (cont.)

 $k' = \frac{\text{time solute spends in stationary phase}}{\text{time solute spends in mobile phase}} = \frac{\text{moles of solute in stationary phase}}{\text{moles of solute in mobile phase}}$

Relative Retention – Alternative Expressions

$$\alpha = \frac{t_{R2}}{t_{R1}} = \frac{k_2}{k_1} = \frac{K_2}{K_1}$$

Efficiency of Separation

Resolution

Solute moving through a column spreads into a Gaussian shape with standard deviation σ . Common measures of breadth are:

- The width $w_{\frac{1}{2}}$ measured at half-height
- The width *w* at the baseline between tangents drawn to the steepest parts of the peak (inflection points).

Resolution (cont.)

It can be shown that:

 $w_{1/2} = 2.35\sigma$

and

 $w = 4\sigma$

Resolution (cont.)

In chromatography, the *resolution* of two peaks from each other is defined as

$$R_{s} = \frac{\Delta t_{R}}{W_{av}} = \frac{\Delta V_{R}}{W_{av}} = \frac{0.589\Delta t_{R}}{W_{1/2av}}$$

where $\Delta t_{\rm R}$ or $\Delta V_{\rm R}$ is the separation between peaks and $w_{\rm av}$ is the average width of the two peaks.

Resolution

• So, separation of mixtures depends on:

width of solute peaks (want narrow)
 efficiency

spacing between peaks (want large spacing)
 selectivity

Example

- What is the resolution of two Gaussian peaks of identical width (3.27 s) and height eluting at 67.3 s and 74.9 s, respectively?
- ANS: Resolution = 2.32

Diffusion

A band of solute broadens as it moves through a column. Ideally, an infinitely narrow band applied to the inlet of the column emerges with a Gaussian shape at the outlet.

Diffusion (cont.)

One main cause of band spreading is *diffusion*. The *diffusion coefficient* measures the rate at which a substance moves randomly from a region of high concentration to a region of lower concentration.

Diffusion (cont.)

The number of moles crossing each square meter per second, called the *flux*, is proportional to the concentration gradient:

flux
$$\left(\frac{\text{mol}}{\text{m}^2 \cdot s}\right) \equiv J = -D\frac{dc}{dx}$$

Broadening of Chromatographic Band by Diffusion

If solute begins to move through a column in an infinitely sharp layer with *m* moles per unit crosssectional area of the column and spreads by diffusion alone, then the Gaussian profile of the band is described by

$$c = \frac{m}{\sqrt{4\pi Dt}} e^{-x^2/(4Dt)}$$

The standard deviation of the band is

Table 23-1 Representative diffusion coefficients at 298 K

Solute (m ² /s)	Solvent	Diffusion coefficient
H ₂ O	H ₂ O	$2.3 imes 10^{-9}$
Sucrose	H ₂ O	$0.52 imes10^{-9}$
Glycine	H ₂ O	$1.1 imes 10^{-9}$
CH ₃ OH	H ₂ O	$1.6 imes10^{-9}$
Ribonuclease (FM 13 700)	H ₂ O (293 K)	$0.12 imes 10^{-9}$
Serum albumin (FM 65 000)	H ₂ O (293 K)	$0.059 imes 10^{-9}$
I ₂	Hexane	$4.0 imes 10^{-9}$
CCl ₄	Heptane	$3.2 imes 10^{-9}$
N ₂	CCl_4	$3.4 imes 10^{-9}$
$CS_2(g)$	Air (293 K)	$1.0 imes10^{-5}$
$O_2(g)$	Air (273 K)	$1.8 imes 10^{-5}$
H^+	H ₂ O	$9.3 imes 10^{-9}$
OH^-	H ₂ O	$5.3 imes 10^{-9}$
Li ⁺	H ₂ O	$1.0 imes10^{-9}$
Na^+	H ₂ O	$1.3 imes 10^{-9}$
K^+	H ₂ O	$2.0 imes10^{-9}$
Cl ⁻	H ₂ O	$2.0 imes10^{-9}$
I ⁻	H ₂ O	$2.0 imes 10^{-9}$

The Theory of Chromatography: Column Efficiency

- Plate theory older; developed by Martin & Synge
- Rate theory currently in use

Plate Theory - Martin & Synge

- View column as divided into a number (N) of adjacent *imaginary* segments called theoretical plates
- within each theoretical plate complete equilibration of analytes between stationary and mobile phase occurs

FIGURE 2.19 Comparison of countercurrent extraction and the chromatographic process.

Plate Theory - Martin & Synge

- Significance? Greater separation occurs with:
 - greater number of theoretical plates (N)
 - as plate height (*H* or HETP) becomes smaller
- L = N×H or H = L / N where L is the length of column, N is the number of plates, and H is the plate height

First Important Prediction of Plate Theory

Band spreading - the width of bands increases as their retention time (volume) increases:
Plate height is the constant of proportionality between the variance of the band and the distance it has traveled:

$$\sigma^2 = 2Dt = 2D\frac{x}{u_x} = \left(\frac{2D}{u_x}\right)x = Hx$$

Second Significant Prediction of Plate Theory

The smaller HETP, the narrower the eluted peak

Plate Theory - Practical Considerations

- Not unusual for a chromatography column to have millions of theoretical plates
- Columns often behave as if they have different numbers of plates for different solutes present in same mixture

Number of plates on column:

$$N = 16 \left(\frac{V_R}{w_b}\right)^2$$

 w_{b} – base width of the peak

This equation is a measure of the *efficiency* of a column.

Sometimes the number of plates is measured at the bandwidth at half-height $w_{1/2}$:

Estimating the Plate Number for Asymmetric Peaks

The Dorsey-Foley equation:

$$N = \frac{41.7 \binom{t_R}{w_{0.1}}^2}{\frac{A}{B} + 1.25}$$

N can be Estimated Experimentally from a Chromatogram

Knowing the number of theoretical plates and the length of the column, we can determine the HETP, *height equivalent to a theoretical plate*:

$$H = \text{HETP} = \frac{L}{N} = \frac{L}{16} \left(\frac{w_b}{V_R}\right)^2 = \frac{L}{16} \left(\frac{w_b}{t_R}\right)^2$$

Effective Number of Theoretical Plates

Introduced to characterize open tubular columns – uses adjusted retention volume $V_{\rm R}$ ' in lieu of total retention volume $V_{\rm R}$:

$$N_{\rm eff} = 16 \left(\frac{V_{R}}{w_{\rm b}}\right)^{2} = 16 \left(\frac{t_{R}}{w_{\rm b}}\right)^{2}$$

Effective Number of Theoretical Plates (cont.)

The $N_{\rm eff}$ value is useful for comparing a packed and an open tubular column when both are used for the same separation.

N and $N_{\rm eff}$ are related by the expression

$$N_{\rm eff} = N \left(\frac{k'}{k'+1}\right)^2$$

Rate Theory

- Based on a random walk mechanism for the migration of molecules through a column
- Takes into account:
 - mechanism of band broadening
 - effect of rate of elution on band shape
 - availability of different paths for different solute molecules to follow
 - diffusion of solute along length

Van Deemter Equation for Plate Height

- In packed columns, all three terms contribute to band broadening
- In open tubular columns, A is zero
- In capillary electrophoresis, both A and C go to zero

Longitudinal Diffusion

- Gives rise to B/u_x term
- Solute continuously diffuses away from the concentrated center of its zone
- The greater the flow rate, the less time is spent in the column and the less longitudinal diffusion occurs

Longitudinal Diffusion (cont.)

The variance resulting from diffusion is

$$\sigma^2 = 2D_m t = \frac{2D_m L}{u_x}$$

Plate height due to longitudinal diffusion:

$$H_D = \frac{\sigma^2}{L} = \frac{2D_m}{u_x} \equiv \frac{B}{u_x}$$

Longitudinal Diffusion (cont.)

In packed columns, the tortuosity coefficient γ is used to account for irregular diffusion patterns and is usually less than unity ($\gamma \sim 0.6$), because molecular diffusivity is smaller in packed columns than in open tubes ($\gamma = 1$):

$$H_D = \frac{2\gamma D_m}{u_x}$$

Zone of solute after short time on column

Longitudinal diffusion (B/u_x)

Zone of solute after longer time on column

Direction of travel

Longitudinal Diffusion (cont.)

Because longitudinal diffusion in a gas is much faster than in a liquid, the optimum flow rate in gas chromatography is higher than in liquid chromatography

Nonequilibrium (Resistance to Mass Transfer Term)

- This term comes from the finite time required for the solute to equilibrate between the mobile and stationary phases
- Some solute is stuck in the stationary phase, but the remainder in the mobile phase moves forward resulting in spreading of the zone
- The slower the flow rate, the more complete equilibration is and the less band broadening occurs

Plate height due to finite equilibration time:

$$H_{\text{mass transfer}} = Cu_x = (C_s + C_m)u_x$$

where C_s describes the rate of mass transfer through the stationary phase and C_m describes the rate of mass transfer through the mobile phase. Specific equations for C_s and C_m depend on the type of chromatography.

For gas chromatography in an open tubular column, the terms are:

Mass transfer in stationary phase:

$$C_{s} = \frac{2k'}{3(k'+1)^{2}} \frac{d_{f}^{2}}{D_{s}}$$

Mass transfer in mobile phase:

$$C_m = \frac{1 + 6k' + 11k'^2}{24(k' + 1)^2} \frac{r^2}{D_m}$$

k' – the capacity factor d_f – the thickness of stationary phase film $D_{\rm s}$ – the diffusion coefficient of solute in the stationary phase r – the column radius D_m – the diffusion coefficient of solute in the mobile phase

- Efficiency is increased by:
 - Decreasing stationary phase thickness
 - Reducing column radius
 - Increasing temperature

Multiple Flow Paths (Eddy Diffusion)

The term *A* accounts for the multitude of pathways that could be followed through the column by one molecule:

 $A = 2\lambda d_p$

 λ – dimensionless constant characteristic of packing

 d_p – the particle diameter

Multiple Flow Paths (Eddy Diffusion) (cont.)

The *A* term can be minimized by:

- Eliminating column packing (open tubular columns)
- Reducing the particle size of the packing
- Packing the column more uniformly (spherical particles of similar size)

Table 25-1Performance as a function of particle diameter

Particle size d _p (μm)	Retention time (min)	Plate number (N)	Required pressure (bar)
3.0	18	42 000	87
1.5	9	83 000	700
1.0	6	125 000	2 300

Theoretical performance of 33-µm-diameter × 25-cm-long capillary for minimum plate height for solute with capacity factor k' = 2 and diffusion coefficient = 6.7×10^{-10} m²/s in water-acetonitrile eluent.

SOURCE: J. E. MacNair, K. D. Patel, and J. W. Jorgenson, "Ultrahigh-Pressure Reversed-Phase Capillary Liquid Chromatography with 1.0-μm Particles," *Anal. Chem.* **1999**, *71*, 700.

Alternative Plate Height Equation: The Knox Equation

- Used to compare column efficiencies
- Makes use of so-called *reduced parameters* (dimensionless quantities):
 - Reduced plate height: $h = H/d_p$
 - Reduced velocity: $v = ud_p/D_m$

$$h = av^{\frac{1}{3}} + \frac{b}{v} + cv$$

The Knox Equation (cont.)

For well-packed columns of varying particle size and differing conditions, the coefficients *a*, *b* and *c* will be roughly constant: e.g. a = 1, b = 2, and c = 0.05 for porous particles.

Modification of the van Deemter Equation: the Giddings Equation

Giddings realized that the eddy diffusion and resistance to mass transfer in the mobile phase must be treated dependently:

$$H = \sum_{i=1}^{5} \frac{1}{\frac{1}{A} + \frac{1}{C_{1}u}} + \frac{B}{u} + C_{s}u + C_{m}u + H_{e}$$

The Giddings Equation

 H_e – extracolumn band broadening

 $C_1 = \left(\frac{c_b d_p^2}{D_m}\right)$

 c_b – a proportionality constant; $c_b \approx 1$

The Giddings Equation (cont.)

The five possible mechanisms of band broadening are:

- Through channels between particles
- Through particles
- Resulting from uneven flow channels
- Between inhomogeneous regions
- Throughout the entire column length

Factors Affecting Resolution

A more usable expression for resolution is

$$R_{s} = \frac{1}{4} \quad \sqrt{N} \quad \left(\frac{\alpha - 1}{\alpha}\right) \quad \left(\frac{k'}{k' + 1}\right)$$

efficiency selectivity retention

Required Plate Number

If k_2 ' and α are known, the required number of plates can be calculated:

$$N_{\rm req} = 16R_s^2 \left(\frac{\alpha}{\alpha - 1}\right)^2 \left(\frac{k_2' + 1}{k_2'}\right)^2$$

The R_s value is set at the 6σ level or 1.5

Required Column Length

The N_{req} parameter can be used to determine the length of column necessary for a separation. We know that N = L/H; thus

$$L_{\rm req} = 16R_s^2 H \left(\frac{\alpha}{\alpha - 1}\right)^2 \left(\frac{k_2' + 1}{k_2'}\right)^2$$

Minimum Analysis Time

The minimum analysis time t_{\min} is

$$t_{\min} = 16R_s^2 \frac{H}{\bar{u}} \left(\frac{\alpha}{\alpha - 1}\right)^2 \frac{(k_2' + 1)^3}{(k_2')^2}$$

The Major Objective in Chromatography

The goal in chromatography is the highest possible resolution in the *shortest possible time*. Optimization techniques aim at choosing conditions that lead to a desired degree of resolution with a minimum expenditure of time

Optimization Techniques

- Minimizing plate height:
 - Reducing $d_{\rm p}$
 - Reducing column diameter
 - Changing column temperature
 - Reducing the thickness of the liquid film
 - Optimizing the flow rate of the mobile phase
Optimization Techniques (cont.)

- Resolution also improves with *L*, but it expensive in terms of time of analysis
- Variation in the selectivity factor:
 - Changing the composition of the mobile phase (in HPLC)
 - Changing the column temperature
 - Changing the stationary phase
 - Using special chemical effects

Effect of Capacity Factor on Resolution and Elution Time

- Increases in k' enhance resolution but at the expense of elution time
- The optimum k' values are from 1 to 5
- The easiest way to improve R_s is by optimizing k'
- In GC, *k*' can be improved by temperature programming
- In LC, k' is improved by gradient elution

 Table 23-2
 Summary of chromatography equations

Quantity	Equation	Parameters
Partition coefficient	$K = C_{\rm s}/C_{\rm m}$	$C_{\rm s}$ = concentration of solute in stationary phase $C_{\rm m}$ = concentration of solute in mobile phase
Adjusted retention time	$t_{\rm r}' = t_{\rm r} - t_{\rm m}$	t_r = retention time of solute of interest t = retention time of unretained solute
Retention volume	$V_{\rm r} = t_{\rm r} \cdot u_{\rm v}$	u_v^m = volume flow rate = volume/unit time
Capacity factor	$k' = t'_{\rm r}/t_{\rm m} = KV_{\rm s}/V_{\rm m}$	$V_{\rm s}$ = volume of stationary phase
	$t_{s} = \frac{t_{s}}{t_{s}}$	$V_{\rm m}$ = volume of mobile phase
	$\kappa = \frac{1}{t_{\rm m}}$	$t_{\rm m}$ = time solute spends in stationary phase $t_{\rm m}$ = time solute spends in mobile phase
Relative retention	$\alpha = \frac{t_{r2}'}{t_{r1}'} = \frac{k_2'}{k_1'} = \frac{K_2}{K_1}$	Subscripts 1 and 2 refer to two solutes
Number of plates	$N = \frac{16t_{\rm r}^2}{2} = \frac{5.55t_{\rm r}^2}{2}$	w = width at base
1	$w^2 = w_{1/2}^2$	$w_{1/2}$ = width at half-height
Plate height	$H = \frac{\sigma^2}{T} = \frac{L}{N}$	σ = standard deviation of band
	X N	x = distance traveled by center of band
		L = length of column
	$\Delta t = \Delta V$	N = number of plates on column
Resolution	Resolution = $\frac{\Delta r_r}{W_r} = \frac{\Delta r_r}{W_r}$	$\Delta t_{\rm r}$ = difference in retention times
	av av	$\Delta V_{\rm r}$ = difference in retention volumes
		w_{av} = average width measured at baseline in same units as numerator (time or volume)
	$\sqrt{N}(\alpha-1)(-k_2')$	same units as numerator (time or volume)
	Resolution = $\frac{1}{4} \left(\frac{\alpha}{\alpha} \right) \left(\frac{1}{1 + k'_{av}} \right)$	N = number of plates
		α = relative retention k' = capacity factor for second peak
		k'_{2} = expansion for second peak k'_{2} = average capacity factor
		av 0 I J

Advantages of Open Tubular Columns

Compared with packed columns, open tubular columns can provide:

- Higher resolution
- Shorter analysis time
- Increased sensitivity
- Lower sample capacity

Advantages of Open Tubular Columns (cont.)

Compared with packed columns, open tubular columns allow

- Increased linear flow rate or a longer column or both
- Decreased plate height, which means higher resolution

Table 23-3Comparison of packed and wall-coated open tubular

column performance^a

Property	Packed	Open tubular
Column length, L	2.4 m	100 m
Linear gas velocity	8 cm/s	16 cm/s
Plate height for methyl oleate	0.73 mm	0.34 mm
Capacity factor, k' , for methyl oleate	58.6	2.7
Theoretical plates, N	3 290	294 000
Resolution of methyl stearate and methyl oleate	1.5	10.6
Retention time of methyl oleate	29.8 min	38.5 min

a. Methyl stearate $(CH_3(CH_2)_{16}CO_2CH_3)$ and methyl oleate $(cis-CH_3(CH_2)_7CH=CH(CH_2)_7CO_2CH_3)$ were separated on columns with poly(diethylene glycol succinate) stationary phase at 180°C.

SOURCE: L. S. Ettre, Introduction to Open Tubular Columns (Norwalk, CT: Perkin-Elmer Corp., 1979),

A Touch of Reality: Asymmetric Bandshapes

